

Chilled Water System Presentation

Constant Volume Distribution

FLOW THINKING

>

Air-conditioning System Components

FLOW THINKING

Constant Volume System Components

FLOW THINKING

> Typical 3-way Valve Zone

FLOW THINKING

Full Load Condition

FLOW THINKING

Fully Loaded Coil

- Supply water temperature
- Design return water temp.
- Coil design flow
- Coil design pressure drop
- Load (flow x $10 \circ F_{\Delta} \times 500$)
- Coil ΔP @ design flow
- Bypass flow
- Bypass ΔP
- 3-way valve pressure drop
- Pump flow and head
- Actual return water temp

45°F 55°F 100 GPM 20 FT 500,000 Btuh 20 FT 0 GPM 3-way valve closed 10 FT 100 GPM @ 30 FT 55 °F

FLOW THINKING

GRUNDFOS

> Unloaded Condition

FLOW THINKING

Unloaded Coil

- Supply water temperature
- Design return water temp.
- Coil design flow
- Coil design pressure drop
- Load (flow x $10^{\circ}F_{\Delta} \times 500$)
- Coil ΔP @ design flow
- Bypass flow
- Bypass ΔP
- 3-way valve pressure drop
- Pump flow and head
- Actual return water temp

45°F 55°F 0 GPM 3-way valve closed 0.0 Btuh 0 FT100 GPM 20 FT 10 FT 100 GPM @ 30 FT 45 °F

So What?

- When the load on the coil is zero, the valve is returning "unused" chilled water at essentially supply temperature.
- Cold return water "unloads" the chillers, causing them to operate inefficiently.

FLOW THINKING

Part Load Condition

FLOW THINKING

Partially Loaded Coil

- Supply water temperature
- Design return water temp.
- Coil design flow
- Coil design pressure drop
- Load (flow x $10 \circ F_{\Delta} \times 500$)
- Coil ΔP @ design flow
- Bypass flow
- Bypass ΔP
- 3-way valve pressure drop
- Pump flow and head
- Actual return water temp

45°F 55°F 50 GPM 20 FT 250,000 Btuh 5 FT ??? GPM 3-way partially closed 10 FT ??? GPM @ 30 FT ?? °F

FLOW THINKING

3-way Valve Characteristic

GRUNDFOS X

FLOW THINKING

What's Really Happening?

FLOW THINKING

COMMERCIAL BUILDING SERVICES

Coil with 3-way Valve at Mid-position

- Supply water temperature
- Design return water temp.
- Load (flow x $10 \circ F_{\Delta} \times 500$)
- Coil design pressure drop
- Coil flow
- Coil ΔP @ 62.5% flow
- Coil leaving water temp
- Bypass flow
- Bypass ΔP
- 3-way valve pressure drop
- Pump flow and head
- Actual return water temp

45 °F 55 °F 250,000 Btuh 20 FT 62.5 GPM 7.8 FT 53 °F 62.5 GPM 7.8 FT 10 FT 125 GPM @ 30 FT 49 °F (62.5 GPM @ 53 °F+ 62.5 GPM @ 45 °F)

FLOW THINKING

$\text{Head}_2 = \text{Head}_1(\text{Flow}_2/\text{Flow}_1)^2$

$$\text{Head}_2 = 20(.625/1)^2$$

 $\text{Head}_2 = 20(.3906)$

$$Head_2 = 7.8$$

$\Delta T = Load/ Flow X 500$

$\Delta T = 250,000/62.5 \text{ X } 500$

$\Delta T = 8$

Therefore, $LWT_{coil} = 45 + 8 = 53$

$RWT = (Flow_1 X EWT + Flow_2 X LWT) / Flow_{1+2}$

RWT = (62.5 X 45 + 62.5 X 53)/125

RWT = 49

FLOW THINKING

>3-way Valve in Mid Position

FLOW THINKING

- 1.Low return water temperatures.
- 2.Robs chilled water from other coils at part load conditions.
- 3. Increases flow in primary piping.
- 4.Adds additional chillers on line.
- 5.Chiller performance is reduced.

FLOW THINKING

>

Chiller Performance Curve

FLOW THINKING

Pump Sizing

- Select for full chiller flow
- Head must be adequate for:
 - Chiller evaporator
 - Longest circuit
 - Coil
 - Three way valve
 - Air separator

FLOW THINKING

>

System Configuration

Any Questions?

Variable Volume Constant Speed

Variable Volume Constant Speed

Primary – Secondary System

- Primary Includes Chillers & Primary Pump.
 Circuit Constant water flow through the chiller is maintained and chilled water is produced
- Secondary Chilled water is circulated to the Circuit demand area (load) by using Secondary pumps.

PRIMARY - SECONDARY

Other Famous Names of Primary-Secondary

Primary – Production Loop

Secondary – Distribution Loop

FLOW THINKING

>

Fundamental Idea

FLOW THINKING

> No Secondary Flow

FLOW THINKING

>

Primary = Secondary

>

Primary > Secondary

FLOW THINKING

Primary < Secondary

FLOW THINKING

Control Valve in Secondary

FLOW THINKING

Common Pipe Design Criteria

- Use the flow of the largest chiller
 - Chiller staging at half of this flow is common
- Head loss in common <1 1/2 ft
 - Distribution pipe size is often used where reductions would be inconvenient
- Three pipe diameters between tees
 - Excessive length increases total head loss
- Low velocities in system piping

FLOW THINKING

Control Valve in Secondary

Three Way Valve

Variable flow through coil Variable flow through system

Two Way Valve

FLOW THINKING

Variable Volume Constant Speed

PRIMARY – SECONDARY CIRCUIT

FLOW THINKING

Control Valves Change the Secondary System Curve

BE THINK INNOVATE

FLOW THINKING

> Head Absorbed by 2-way Valves

FLOW THINKING

Pump Horsepower Comparison

FLOW THINKING

Constant <u>vs</u> Variable Volume

BE THINK INNOVATE

Any Questions?

Step Function of Chillers

FLOW THINKING

Production = Distribution

BE THINK INNOVATE

FLOW THINKING

Distribution > Production

BE THINK INNOVATE

FLOW THINKING

Production > Distribution

FLOW THINKING

"Loading" a Chiller

- A chiller is a heat transfer device. Like most equipment, it is most efficient at full load.
- To "load" a chiller means:

>

- Supply it with its rated flow of water
- Insure that water is warm enough to permit removal of rated Btu without freezing the water

FLOW THINKING

Chiller Performance Curve

BE THINK INNOVATE

FLOW THINKING

Check Valve in Common?

FLOW THINKING

What can we do?

FLOW THINKING

- Lower chiller set point when mixing occurs to maintain a constant temperature to the system.
- Expect increases in cost of chiller operation at lower set point: 1-3% per degree of reset.
- Delays start of the next chiller.

FLOW THINKING

What else can we do?

- Coils that are selected at higher supply temperatures will not be impaired by small changes.
- Loads that require fixed temperatures may use a small chiller to reverse the effects of mixing.

FLOW THINKING

> Multiple Chillers

FLOW THINKING

60/40 Chiller Split to Help Minimize Low Part Load Operation

FLOW THINKING

Typical Load Profile

FLOW THINKING

Three Unequally Sized Chillers

FLOW THINKING

>

Approaching Flow = Load

Time

Any Questions?

BE>THINK>INNOVATE>

FLOW THINKING

Two Pipe Direct Return

Return

FLOW THINKING

> Two Pipe Reverse Return

FLOW THINKING

Primary-Secondary Pumping.

- Simplest to install.
- Simplest to operate.
- Flexible in design for present and future.
- Efficient to operate.
- May over-pressurize near zones.

FLOW THINKING

> Primary-Secondary-Tertiary

BE THINK INNOVATE

FLOW THINKING

Primary-Secondary-Tertiary Pumping.

- Best piping flexibility.
- Best expansion flexibility.
- Provides hydraulic decoupling.
- Efficient to operate.
- May require added horsepower.
- Requires additional pumps and piping.
- Increased controls complexity.

FLOW THINKING

>

Primary-Secondary-Tertiary Hybrid

BE THINK INNOVATE

FLOW THINKING

Primary-Secondary-Tertiary Hybrid Pumping.

- Low present horsepower.
- Low future horsepower.
- Good piping flexibility.
- Good expansion flexibility.
- Provides hydraulic decoupling.
- May require added horsepower
- Requires additional pumps and piping.
- Increased controls complexity.

FLOW THINKING

> Primary-Secondary Zone Pumping

FLOW THINKING

Primary-Secondary Zone Pumping.

- Low 'built out' horsepower.
- Low system head.
- Increased control complexity.
- Present horsepower total higher due to future needs.
- Present pumps sized for future requirements.
- Difficult to apply in retrofits projects.

Any Questions?

BE>THINK>INNOVATE>

Variable Volume Variable Speed

BE>THINK>INNOVATE>

Why Do We Need Variable Speed Secondary Pumps ???

•For Energy Saving....

•For better & optimise operation....

How Do We Achieve This Reduction In Power Consumption ??

By Using Variable Frequency Drive and Logic controller with the Secondary Pumps....

Power Comparison at Reduced Speed

Basic Law which helps in achieving this – Affinity law

- 1. $Flow_2 = Flow_1(Speed_2/Speed_1)$
- 2. $Head_2 = Head_1(Speed_2/Speed_1)^2$
- 3. $BKW_2 = BKW_1(Speed_2/Speed_1)^3$

If Diameter of Impeller is to be trimmed then instead of speed the same can be used in above formulas.

FLOW THINKING

Operating Cost

GRUNDFOS X

FLOW THINKING

Variable flow system

FLOW THINKING

Energy savings offset

FLOW THINKING

COMMERCIAL BUILDING SERVICES

> Pumps in parallel

FLOW THINKING

> Parallel pumping power savings

FLOW THINKING

COMMERCIAL BUILDING SERVICES

Theoretical Savings

GRUNDFOS X

FLOW THINKING

Establishing Efficiency Curves

FLOW THINKING

Variable Speed Efficiencies

CAPACITY, U.S. GPM

FLOW THINKING

"No Valve" System Curve

FLOW THINKING

10

Effect of Constant Set Point

GRUNDFOS X

FLOW THINKING

> Control curve

Flow

FLOW THINKING

Large systems, long pipe runs

Annual Operating Cost (\$1000/year @ \$0.10/kwh)

GRUNDFOS X

FLOW THINKING

FLOW THINKING

FLOW THINKING

Locations of Sensor

Where to install the Sensor?

What type of Sensor?

FLOW THINKING

Single Point Pressure Sensor

FLOW THINKING

Single Point Pressure Sensor

Is Single Point Pressure Sensor Correct? Wrong !!

Why?

-Pump is a differential pressure device.

-A single point is only influence by pressure. This is good for booster only.

-In a closed loop system, system pressure rises due to thermal expansion, pumps will slow down.

-When static pressure decrease, pumps will speed up.

-This is self-defeating since now the pump speed is not influence by the system load changes, but rather by system water pressure.

-Therefore, single pressure sensor are a misapplication in a closed loop HVAC system.

FLOW THINKING

> Single Point Differential Pressure Sensor

Primary - Secondary Circuit With Variable Speed Secondary Pumps

FLOW THINKING

2 Way Valve Control

Opening/Closing of 2- Way Valve

- -Signal from the sensor, installed at load
 - regulates the valve opening & closing.
- -This way differential across 2-way valve also
 - changes & accordingly output signal is given to
 - PLC.

Question:

Can we put the DPT across coil alone?

BE>THINK>INNOVATE>

Question:

Across the pumps?

BE>THINK>INNOVATE>

Single Point Differential Pressure Sensor

Primary - Secondary Circuit With Variable Speed Secondary Pumps

To Maximize energy system, we must maximize the variable head loss in the system. This is done by locating the sensor at the most remote zone (hydraulically) in the system.

FLOW THINKING

System Control Curve

FLOW THINKING

Variable vs Constant Head Loss

FLOW THINKING

The "Active Zone"

- Zone set points do not have to be the same.
- Pump controller scans all zones often, comparing process variable to set point in each case.
- Pumps are controlled to satisfy the worst case.
- What happens to the rest of the zones?

FLOW THINKING

Basic Concept

PFU – Pump Functional Unit

PMU – Pump Management Unit

FLOW THINKING

> Multi Point Differential Pressure Sensor

Different Sensor Signal To Common PFU Panel

> Multi Point Differential Pressure Sensor

POSSIBILITY OF MULTIPLE PROCESS SIGNALS FROM DIFFERENT ZONES

All zones can have different set values

> Multi Point Differential Pressure Sensor

POSSIBILITY OF MULTIPLE PROCESS SIGNALS FROM DIFFERENT ZONES

FLOW THINKING

HVAC Control System

DPT Signal Comparator

FLOW THINKING

HVAC Control System

DPT Signal Comparator

- High and Low Signal Selections
- Signal Averaging
- High/Low Limit Control

The module has the addition following features :

- 1) LED status indications
- 2) Accepts voltage or milliamp input signal
- 3) DIP switch-selectable operating modes
- 4) Accepts 24 VAC/DC power

FLOW THINKING

HVAC Control System

DPT Signal Comparator

Benefits

1) We are able to supply VFD systems with multiple inputs signals ranges to compete with our competitors.

2) We are able to use Grundfos PFU 2000 as the main processor to control the full system operations.

3) We will be minimising outsourcing or external controller in order to serve the HVAC market.

4) The MM allows us to integrate into the system multiple sensor control at a more cost effective price.

HVAC System

Other Types of Systems

FLOW THINKING

Separate System for Each Zone

FLOW THINKING

Separate System for Each Zone

Systems In Multi - Zones

Two options:

- Separate Systems can be used for different zones. So each zone will have its own sensor.
- 2. Signal from different zone sensors is given to the common PFU and most deviated signal, from the set point, is given as output.

FLOW THINKING

Tertiary Pumping System

FLOW THINKING

Reverse Return Pumping

Load

FLOW THINKING

Reverse Return Pumping

Benefits :

- 1) Equalize the pressure drops of each zone.
- 2) Selections of the sensor becomes easier.
- 3) If load are similar or symmetrical, 1 centrally located sensor is adequate.
- 4) As in direct return system, multiple sensor can still provide a benefit to the end user.

Type of VFD Systems

Possible Options of Variable Speed panels

Type ME - Multiple Pumps & Multiple VFDs.

Type MF - Common VFD for Multiple Pumps.

BE > THINK > INNOVATE >

System with Multi Pumps & Multi VFDs

System with Common VFD for All Pumps

APPROVAL FROM INTERNATIONAL AGENCIES

Approval from – CE, U/L

Conforms to - Electromagnetic compatibility (89/336/EEC) to standard EN 50 081 – 1 and EN 50 082 – 2 and Electrical equipment design 73/23/EEC standard to EN 60 204-1.

Single PMU For Control of 8 Zones/Pumps

Single PMU For Control of 8 Zones/Pumps

The End

BE>THINK>INNOVATE>